CMLOG Documentation
Version 2.x

Jie Chen
William Watson I11

chen@jlab.org
watson@jlab.org

July 25, 2001

CMLOU

G 1

1 What Is CMLOG ?

1.1

Description

CMLOG is a distributed message logging system which could be used by any application or system
desiring to log messages to centralized log files, and display distributed messages on set of displays.
It supports C++ and C application interfaces for logging messages (Logging Client APIs) , and has

C++

application interfaces for searching/retrieving messages from a dedicated logging server(Browser

APIS).

1.2

1.2.1

Features

Messages being logged are of type cdevData that is flexible to allow applications to log data of
any types.

Logging client APIs are in a single library called libcmlog.a (so). It has C++ and C callable
routines that allow any applications to log messages to the server.

Logging clients send messages to a client daemon that buffers all incoming messages from all
clients on the host and sends messages to the server.

Logging client APIs have a CDEV interface.
Logging client APIs can be safely called inside Threads.
Logging client APIs can be safely called inside Interrupt Service Routines (ISR).

Applications that wish to search/retrieve messages from the server can use a single C++ library
libcmlogb.a.

Browser API provides server crash notification mechanism.

All messages in the logging files are time stamped and organized in B+ tree that allow fast data
look up by time

The server is implemented in Multi-Threaded (Multi-Process) fashion to improve network through-
put and responsiveness

The server supports asynchronous network I/O operations.
The server supports runtime configuration.

A sample Motif implementation of browser is provided.

Server Configuration Parameters

A CMLOG server can take a configuration file to configure itself to suit to different site. The followings
summarize these parameters.

High Performance Computing Group

CMLOG 4

Name/Description Examples
cmlogServerPort 8900

A server runs on this UDP port.

cmlogMaxClntConnections ‘ 64

Maximum number of machines connecting to a server.
cmlogMaxBrowserConnections ‘ 16

Maximum number of browsers connecting to a server.
cmlogDefaultDirectory | /tmp

A server runs in this directory.

cmlogLogFile ‘ cmlogServer.log

The server log file resides in the above directory.
cmlogDatabaseName | /usr/local /cmlog %s

The prefix for server database filenames.
cmlogSecondaryDatabase | /usr/local/1997/cmlog_%s
The prefix for server secondary database filenames.
cmlogCxtDatabaseName | /usr/local/cmlogext_%s
The prefix for server context database filenames.
cmlogSecondaryCxtDatabase | /usr/local/1997/cmlogext_%s
The prefix for server secondary context database filenames.
cmlogTagTableName | /usr/local/cmlogTagTable
Tag table file name for a server.

cmlogDbaseChangelnterval ‘ 1440

Database name changes every 1440 minutes (24 hrs).

1.2.2 Run Time Environment Variables

There are two run time environment variables that effect initial handshakes among server, clients and
browsers. The CMLOG_HOST environment variable denotes that a server is running on this host.
All clients and browser send udp packet to this host instead of using broadcast. The CMLOG_PORT
environment variable denotes a UDP port on which a server is running.

1.3 Platforms

CMLOG has been compiled for Solaris, Solaris-lp64 (64 Bit), HP_UX (9.x), HP_UX (10.x) using either
CC or aCC and RedHat Linux on Intel and Alpha (6.x & 7.x). The logging client API has been
compiled and tested on mv162(7), PowerPC (many thanks to David Abbott of DAQ group at Jefferson
Lab), niCpu30 (Ported by Ron MacKenzie at SLAC), and pc486 (Ported by Peregrine M. McGehee at
LEDA Project of LANL) running VxWorks 5.2(3).A Makefile and Makefile.config are provided. These
files also provide starting point to port CMLOG to other platforms.

1.4 Limitations

1.4.1 Limit on Multi-Servers in a single subnet

The CMLOG server runs on a well known UDP port. All logging clients and browsers use a broadcast
message to the port to establish network connection to the server. If one wishes to have more than one
logging server on the net, one has to use run time configuration method to start a different server. All

High Performance Computing Group

CMLOG 5

logging clients and browsers can use CMLOG_PORT environment variable to communicate with new
server.

1.4.2 Limit on recovery of lost messages

In case of server crash, all messages from logging clients that are still logging messages will be lost.
In future, CMLOG will provide a way to save these messages which then can be merged into the
centralized database by a simple utility.

Name/Description Value Where
CMLOG_CLNT_PORT 8909 cmlogConfig.h
CLient Daemons run at this UDP port.

CMLOG_MIN_KEY _PAGE | 10 | cmlogConfig.h
Minimum number of keys on page.

CMLOG_PAGE_SIZE | 4096 | cmlogConfig.h
Database page size.

CMLOG_CLNT_PIPE ‘ /pipe/cmlog_1 ‘ cmlogConfig.h
The pipe device on vxworks .

CMLOG_CLNT_PIPE ‘ /tmp/cmlog_ip ‘ cmlogConfig.h
The named pipe on Unix machines.

CMLOG-NUM_PROC_THREADS ‘ 10 ‘ cmlogConfig.h
Number of threads to process incoming I/O messages.
CMLOG_-NUM_SVC_PROC ‘ 2 ‘ cmlogConfig.h
Number of processes to process query messages.

CMLOG_DSHMEM SIZE ‘ 80 k ‘ cmlogConfig.h
Size of a shared memory holding logging messages.

CMLOG_CSHMEM SIZE [20 k | cmlogConfig.h
Size of a shared memory holding querying messages.
CMLOG_DBASENAME SIZE ‘ 128 ‘ cmlogConfig.h
Maximum size of database file names.

Table 1: Most of static parameters for cmlog system.

Note: Linux uses clone system call to implement pthread. If cmlogServer is compiled using pthread
on linux, limit CMLOG_NUM_PROC_THREADS to a small number.

1.4.3 Limit on logging files

All logging files must be in locations specified either by cmlogDatabaseName (cmlogCxtDatabaseName)
or by cmlogSecondaryDatabase (cmlogSecondaryCxtDatabase) in the server configuration file. The
format of cmlogSecondaryDatabase can be either a single full file path that is not the same as the
cmlogDatabaseName or a list of full file paths. For example, one can specify the following way to tell
the server to search three directories:

cmlogDabaseName: /cmlog/file/data/cmlog %s

cmlogSecondaryDatabase: /cmlog/file/data/1997/cmlog_%s:/cmlog/file/data/1998 /cmlog_%s

High Performance Computing Group

CMLOG 4

1.4.4 Limit on query capabilities

Currently one can retrieve all messages logged into the logging files within a specified time window.
The CMLOG currently does have simple querying methods that are similar to logic expressions in C
language.

Name/Description Value
CMLOG_SUCCESS 0
Execution finished successfully.
CMLOG_ERROR ‘ -1
Execution finished abnormally.
CMLOG_INVALIOBJ |1
Invalid cdev object.
CMLOG_INVALIDARG | 2
Caller uses wrong arguments.
CMLOG_INVALIDSVC [3
Wrong cdev service
CMLOG_-NOTCONNECTED ‘ 4
Logging clients or browsers are not connected to the server.
CMLOG_IOFAILED ‘ 5
Low Level I/O operations failed.
CMLOG_CONFILICT IG
conflicts of data types or tags
CMLOG_NOTFOUND K
Query process find no answer.
CMLOG_TIMEOUT E
Connection timeout

CMLOG_CONVERT ‘ 9
cdevData conversion error

Table 2: Error codes of cmlog system.

1.4.5 Limit from static parameters

Some of parameters are hard coded in the server. They can be easily changed to accommodate the
needs of different sites. These parameters are usually related to run time characters of the server.
They may influence the performance of the server. We may study the effect of these parameters on
performance in the coming months. See Table 1.

2 Application Program Interfaces

2.1 Introduction

This section describes basic functions application programmers can use to log messages to or retrieve
messages from a server.

High Performance Computing Group

CMLOG 9

2.2 CMLOG Error Code

All CMLOG APIs use a set of error code to describe the execution status of a method. Table 2 and
Table 3 summarize of the error code which can be found in cmlog.h.

CMLOG_NOTCONSERVER | 80
Cannot connect to server.
CMLOG_NOTFOUNDSERVER | 81
Cannot find server anywhere.
CMLOG_CONN_TIMEOUT | 82
Connection timeout.

CMLOG_FILTERED | 83
Logging messages have been filtered.
CMLOG_NOFILTERING | 84
No filtering applied.

CMLOG_DROPPED | 85
Messages are dropped.

CMLOG_BADIO | 86
Writing/reading on a bad socket.
CMLOG_OVERFLOW ‘ 87
Messages overflow the buffer (vxWorks).
CMLOG_INCOMPLETE | 88
Unfinished IO.

CMLOG_CBK_FINISHED | 89
10 request is finished.
CMLOG_QUERY_PAUSED ‘ 90
Query callback paused by the browser.
CMLOG_QUERYMSG_ERR ‘ 91
Query Message Syntax error.
CMLOG.THREAD_ERR | 92
Query Thread Initialization error.
CMLOG_QUERY_CANCELED | 93
Long Query Request is Canceled.

Table 3: More error codes of cmlog system.

2.3 Logging Client API
2.3.1 C++ interface

C++ interfaces for logging clients are organized into a single C++ class called cmlogClient.

e cmlogClient (char* progname)

— Description

High Performance Computing Group

CMLOG

This is a constructor for cmlogClient. This can be only accessed when UNIX ap-
plications are compiled. It takes an argument that denote the program name. If
no progname is given, default name from command argument will be used on Unix
machines.

e cmlogClient* logClient (void)

— Description

This is a constructor for cmlogClient on vxWorks.

e ~cmlogClient (void)

— Description

This is the destructor for cmlogClient. It will close network connection and free all
resources.

e int connect (int connetionRetries = 3)

— Description

This method establishes network connection between the logging client and the
client daemon. It tries to connect to the daemon in ’connectionRetries’ times. If
there is no client daemon present, the routine will try to start one. It returns CM-
LOG_SUCCESS upon successful connection, and returns CMLOG_ERROR upon
failure. This routine also sends additional information such as user name, process
id to the server once the connection is established.

e int connect (cdevData& cxt, int connetionRetries = 3)

— Description

This routine is very similar to the above routine except that callers have control
over what to send to the server upon connection.

e int disconnect (int connetionRetries = 3)

— Description

This routine disconnect logging clients from the client daemon. It returns CM-
LOG_SUCCESS upon success, and returns CMLOG_ERROR . upon failure.

e int logMsg (char* format, ...)

— Description

A convenience routine to log a message to the server. The format string must be in
the form of tagged items. Tt returns CMLOG_SUCCESS, CMLOG_FILTERED or
CMLOG_NOCONSERVER.

— Example

High Performance Computing Group

CMLOG /

logMessages (void)
{

cmlogClient client;

if (client.connect () == CMLOG_SUCCESS)
client.logMsg (‘‘severity = \/d text = \/s’’, 10, ‘‘hello’’);
}

e int postError (int verbosity, int severity, int code, char* facility, char* format,
)
— Description

This routine offers another way to log message with given verbosity, severity, error
code, and facility name. The format still must be in the form of tagged items as
described in the above routine.

e int postData (cdevData& data)

— Description

This routine is a general routine to allow programs to log any cdevData into the
database. If the data does not contain a valid time stamp, a current time stamp
will be issued.

e int postStaticData (cdevData& data)

— Description

This routine is a general routine to allow programs to log a static cdevData into
the database. This rouine is useful for vxworks.

e int setThrottle (char* tag, int size, int limit, double dt)

— Description

This routine is used to set throttling on a particular tag. After this routine has been
called, only ’limit’ number of messages will be logged within time interval ’dt’. The
'size’ is size of the list holding all throttled messages. It return CMLOG_SUCCESS
or CMLOG_ERROR.Note a subsequent this call overrides previous call. In addition
number of dropped messages is saved in the subsequent messages using a tag of
“dropped”.

e int getThrottle (char** tag,int& size,int& limit,double& dt)

— Description

This routine is used to get throttling parameters. It returns CMLOG_SUCCESS if
there is a throttling on a particular tag (Callers should free tag after using it). It
returns CMLOG_ERROR if there is no throttling.

e int setSeverityThreshold (int thresh)

High Performance Computing Group

CMLOG o]

— Description

This routine sets severity threshold. Any messages with severity less than the
threshold will not be logged. It return CMLOG_SUCCESS and CMLOG_ERROR.

e int getSeverityThreshold (void) const

— Description

This routine gets severity threshold.

e int setVerbosityThreshold (int thresh)

— Description

This routine sets verbosity threshold. Any messages with verbosity larger than the
threshold will not be logged. Tt return CMLOG_SUCCESS and CMLOG_ERROR.

e int getVerbosityThreshold (void) const

— Description

This routine gets verbosity threshold.

e int logMsgIl (char* format, int arg0-9)

— Description

This routine is designed for use in the Interrupt Service Routines of vxWorks only.
The format must be in the form of tagged items only. It return CMLOG_SUCCESS
or CMLOG_ERROR.

e int postErrorIl (int verbosity, int severity, int code, char* facility, char* format,
int arg0-5)
— Description

This routine is designed for use in the Interrupt Service Routines of vxWorks only.
The format must be in the form of tagged items only. It return CMLOG_SUCCESS
or CMLOG_ERROR.

2.3.2 C Interface

C interfaces of logging clients can be used through a new data type cmlog_client_t. Any programs
that wish to log messages to the server have to create a handler of type cmlog_client_t. All subsequent
calls use the handle to log messages.

e cmlog client_t cmlog open (char* progname)

— Description

Establish network connection to the client daemon. It returns 0 if there is no
connection established.

e void cmlog_close (cmlog_client_t handle)

High Performance Computing Group

CMLOG J

— Description

Close network connection.

e int cmlog_logmsg (cmlog_client_t handle, int verbosity, int severity, int code, charx
facility, char* format, ...)

— Description

Log messages with given verbosity, severity, code, and facility. The format string
must be in the form of tagged items.

e int cmlog_logtext (cmlog_client_t handle, char* format, ...)

— Description

Log messages described with the format string. The format string must be in the
form of tagged items.

e int cmlog_logtextI (cmlog.client_t handle, char* format, int arg0-9)

— Description

A special routine for ISR of vxWorks.

e int cmlog_logmsgl (cmlog_client_t handle, int verbosity, int severity, int code, char*
facility, char* format, int arg0-5)

— Description

A special routine for ISRs of vxWorks.

e int cmlog_set_severity_threshold (cmlog_client_t handle, int threshold)

— Description

Set severity threshold for all messages. Any messages with severity smaller than
threshold will not be logged.

e int cmlog get_severity_threshold (cmlog_client_t handle, int* threshold)

— Description

Get severity threshold for all messages.

e int cmlog_set_verbosity_threshold (cmlog_client_t handle, int threshold)

— Description

Set verbosity threshold for all messages. Any messages with verbosity greater than
threshold will not be logged.

e int cmlog get_verbosity_threshold (cmlog._client_t handle, int *threshold)

— Description

Get verbosity threshold for all messages.

High Performance Computing Group

CMLOG

e int cmlog_set_throttle (cmlog_client_t handle, char* tag, int valuerange, int limit,
double dt)

— Description

This routine is used to set throttling on a particular tag. After this routine has been
called, only ’limit’ number of messages will be logged within time interval ’dt’. The
'size’ is size of the list holding all throttled messages. It return CMLOG_SUCCESS
or CMLOG_ERROR. Note a subsequent this call overrides previous call. In addition
number of dropped messages is saved in the subsequent messages using a tag of
“dropped”.

e int cmlog get_throttle (cmlog_client_t handle, char** tag, int *valuerange, int *limit,
double *interval)

— Description

This routine is used to get throttling parameters. It returns CMLOG_SUCCESS if
there is a throttling on a particular tag (Callers should free tag after using it). It
returns CMLOG_ERROR if there is no throttling.

2.3.3 Some Simple Examples
The following is a simple C++ example to log messages to the CMLOG server.

#include <cmlogClient.h>
#include <unistd.h>

#ifndef __vxworks
main (int argc, char** argv)
#else
clientTest (char* name)
#endif
{
int status;
#ifndef __vxworks
cmlogClient *client
#else
cmlogClient *client

#endif

new cmlogClient (argv[0]);

cmlogClient::logClient ();

if (client->connect () == CMLOG_SUCCESS) {
cdevData: :insertTag (322, "highVIn");
cdevData: :insertTag (323, "highVOut");

client->setThrottle ("highVIn", 100, 25, 1.0);
cdevData data;

for (int i = 0; i < 100; i++) {
sprintf (temp, "Test program error happend %d\n", i);

High Performance Computing Group

CMLOG

status = client->postError (32, 12, CMLOG_ERROR,
"EPICS",
highVIn = %d highVOut = %d text = %s",
i, 1i*100, temp);
}
client->disconnect ();
}
else
printf ("Cannot connect to daemon\n");

The following is the sample makefile for the above C++ code (clientTest.cc) on a Unix machine
(Let us assume this machine is a hpux machine).

CXX = CC
CXXFLAGS = -I$(CMLOG)/include -D_CMLOG_BUILD_CLIENT

0BJS
LIBS

clientTest.o
-L$(CMLOG) /1ib/hpux -lcmlog

all: clientTest

clientTest: $(0BJS)
rm -f $@
$(CXX) -o $@ $(LIBS)

.CC.0:
rm -f $0
$(CXX) $(CXXFLAGS) -c $< -0 $0

clean:
rm -f *.0 clientTest core *~

The following is the sample makefile for the above C++ code (clientTest.cc) on a mv162 machine
(Let us assume this board is running vxWorks 5.2)

CXX = c++68k

CXXFLAGS = -I$(CMLOG)/include -D_CMLOG_BUILD_CLIENT -0 \
-I$(VX_VW_BASE) /h -fstrength-reduce -fforce-mem \
-finline-functions -fno-builtin -fno-for-scope -nostdinc \
-DCPU=MC68040 -DCPU_FAMILY=MC680X0 -ansi -pipe \
-Dvxworks -msoft-float

0BJS = clientTest.o
MAKELIB = 1d68k -r -o

all: clientTest

High Performance Computing Group

CMLOG

clientTest: $(0BJS)
rm -f $0
$ (MAKELIB) -o $@ $(0OBJS)

.CC.O:
rm -f $0
$(CXX) $(CXXFLAGS) -c $< -0 $0

clean:
rm -f *.0 clientTest core *~

The following is a simple ¢ code example using the CMLOG client APIs to log messages.

#include <stdio.h>
#include <string.h>
#include <cmlog.h>

#ifndef __vxworks
main (int argc, char** argv)
#else
client_test (char* name)
#endif
{

int status;

cmlog_client_t cl;

int i = 0;

char message[256];

#ifndef __vxworks

cl = cmlog_open (argv[0]);
#else

cl = cmlog_open (name);

#endif

if (cl == 0) {
fprintf (stderr, "cannot open cmlog client\n");
exit (1);

}

for (i = 0; i < 100; i++) {
sprintf (message, "Test error c interface at %d\n", i);
status = cmlog_logmsg (cl, 32, 12, CMLOG_ERROR,
"EPICS", "value = %d status = %d text = %s",
i*10, 0, message);
#ifndef __vxworks

sleep (1);

High Performance Computing Group

CMLOG

#else
taskDelay (sysClkRateGet ());
#endif
}

cmlog_close (cl);

}

Once again we show a example Makefile for the above c test code (client_test.c).

CXX = CC

CC = cc

CFLAGS = -I$(CMLOG)/include -D_CMLOG_BUILD_CLIENT
0BJS client_test.o

LIBS = -L$(CMLOG) /1ib/hpux -lcmlog

all: client_test

client_test: $(0BJS)
rm -f $@
$(CXX) -o $@ $(0BJS) $(LIBS)

rm -f $0
$(CC) $(CFLAGS) -c $< -o $@

clean:
rm -f *¥ *,0 core client_test

The following is the sample makefile for the above ¢ code (client_test.c) on a mv167 machine (Let
us assume this board is running vxWorks 5.3)

CC = cc68k

CFLAGS = -I$(CMLOG)/include -D_CMLOG_BUILD_CLIENT -0 \
-I$(WIND_BASE) /target/h -fstrength-reduce -fforce-mem \
-finline-functions -fno-builtin -nostdinc \
-DCPU=MC68040 -DCPU_FAMILY=MC680X0 -ansi -pipe \
-Dvxworks

0BJS = client_test.o
MAKELIB = 1d68k -r -o
all: client_test
client_test: $(0BJS)

rm -f $@
$ (MAKELIB) -o $0@ $(0BJS)

High Performance Computing Group

CMLOG

rm -f $0
$(CXX) $(CFLAGS) -c $< -o $@

clean:
rm -f *.0 client_test core *~

2.3.4 CDEYV Interface On Unix

A cmlogService.so can be built if CDEV package is present. A simple extension to existing DDL file
allows caller to make cdev call to log messages to the server. The extension looks like the following:

service cmlog {
tags {PV}
}

class CMLOG {
verbs {set}
attributes {
msg cmlog {};
}
}
CMLOG :
cmlog

Then a typical cdev call can be used to log messages.
#include <cdevSystem.h>

#include <cdevRequestObject.h>
#include <cdevData.h>

int main (int argc, char** argv)

{
cdevSystem& system = cdevSystem::defaultSystem ():
cdevData data;
cdevRequestObject* obj;
obj = cdevRequestObject::attachPtr (‘‘cmlogClient’’,‘‘set msg’’);
if (obj) {
data.insert (‘‘severity’’, 10);
data.insert (‘‘text’’, ‘‘error happend’’);
obj->send (data, 0);
}
}

High Performance Computing Group

CMLOG

2.3.5 VxWorks Issues

CMLOG logging client APIs are very easy to use on vxWorks. However one has to load cmlogClientD
(client daemon) before loading libcmlog.a when one boots vxWorks target. Two convenient routines of
cmlogVxLogDisable() and cmlogVxLogEnable() will disable and enable cmlog system respectively. In
addition all tasks share a single tag table and a single cmlogClient.

3 Browser APIs

CMLOG provides a set of C++ APIs for applications to retrieve messages previously logged in the
database. The I/O requests sent from browsers to the server are in the form of cdevData that has start
and end tagged values specifying the time interval within which the query is performed. In addition
caller can also specify a selection rule which can be inserted into the outbound cdevData with tag
queryMsg. Most of APIs are organized in a C++ class called cmlogBrowser. In addition there is one
class called cmlogPacket which holds array of cmlog_cdevMessages. In spite of the complex nature
of cmlog_cdevMessage, only a single member function getData() is used in the APIs. The following
subsection will describe only related member functions of ecmlogPacket and cmlog-cdevMessage.

3.1 Related C++ Classes

e cmlog_cdevMessage

— cdevData* getData (void)
* Description
Returns a pointer of cdevData that is contained by cmlog_cdevMessage.

e cmlogMessage

— operator cmlog_cdevMessage& (void)
* Description
Convert cmlogMsg to cmlog_cdevMessage by returning a reference of cmlog_cdevMessage.

e cmlogPacket

— cmlogMsg** messages (void)

* Description

Returns a list of cmlogMsgs that is a wrapper of c¢cmlog_cdevMessage. Callers
should free all items in the list, and list itself.

— unsigned long numberOfData (void)

* Description
Returns number of ¢mlogMsgs in the above list.

The following is a simple example that gets array of cdevDatas from a pointer to a cmlogPacket.

#include <cmlogBrowser.h>

High Performance Computing Group

CMLOG

main (int argc, char** argv)

{

cmlogPacket* packet;
cdevData* data;

/* assume we have this cmlogPacket through some ways */
if (packet) {

cmlogMsg** msgs = packet->messages ();

for (int i = 0; i < packet->numberOfData (); i++) {
cmlog_cdevMessage& imsg = (*msgs[i]);

data = imsg.getData ();
}

for (i = 0; i < data->number0fData (); i++)

delete msgs[il;
delete [Imsgs;

3.2 cmlogBrowser
Definition of callback function
typedef void (*cmlogBrCallback)(int status, void* arg, cmlogPacket* data);
e cmlogBrowser (void)
— Description
Constructor for cmlogBrowser.
e ~cmlogBrowser (void)

— Description

Destructor for cmlogBrowser. If network connection is established, this closes net-
work connection and clean all resources.

int connect (int numConnectionRetries = 3)

— Description

Tries to connect to a CMLOG server 'numConnectionRetries’ times. It returns
CMLOG_SUCCESS upon connection, and returns CMLOG_ERROR if it fails to

connect.
e int disconnect (void)

— Description

Disconnects this browser from a server. It returns CMLOG_SUCCESS.

e int connected (void) const

High Performance Computing Group

UM

LOG

— Description

Returns 1 for connected browser.

e int disconnectCallback (cmlogBrCallback cbk, void* arg)

— Description

Registers a callback function to this browser. In case of server crash, this func-
tion will be called. It returns CMLOG_SUCCESS upon success, and returns CM-
LOG_ERROR if this callback function is already registered.

e int queryCallback (char* msg, cdevData& data, cmlogBrCallback cbk, void* arg)

— Description

e Example

This routine is used to query the server to find messages. Currently only four
messages are supported. They are “query”, “stopQuery”, “monitorOn []”
and “monitorOff [|” where [|s denote attributes of a CMLOG server. At present
there two attributes that can be monitored. One is loggingData which symbolizes
currently incoming logging data to the server. Another is allTags that holds all
tag strings and corresponding tag values of the server.

The cdevData object ’data’ must contain time interval which is specified by “start”
and “end” tagged values. In addition it may contain a tagged item with tag
“numberItems” to tell a server how many messages a browser wants to retrieve
and it may contain a tagged item with tag “queryMsg” to tell server to only
return messages that satisfy the conditions specified by the query message.

Here is an example that does simple query.

char* rules = ‘‘severity==1 && status == 0’’;

cdevData data;

/* 861759125 represents Tue Apr 22 21:32:45 EDT 1997 */
data.insert (‘‘start’’, 861759125);

data.insert (‘‘end’’, 861759445) ;

data.insert (‘‘numberItems’’, 100);

data.insert (‘‘queryMsg’’, rules);

browser.queryCallback (‘‘query’’, data,

callback, (void *)0);

e int getFd (void) const

— Description

Returns the socket file descriptor to callers. This socket file descriptor can then be
used inside a event loop to monitor network IO of browsers.

e int pendI0 (double seconds)

— Description

High Performance Computing Group

CMLOG

Checks network I/O events upto ’seconds’ long. If seconds equals to 0.0, it be-
comes a polling routine. It returns CMLOG_SUCCESS, CMLOG_TIMEOUT, CM-
LOG_BADIO or CMLOG_IOERROR.

e int pendI0 (void)

— Description

It is very similar to the above. It waits forever for network I/O events. It returns
CMLOG_BADIO, CMLOGIOERROR or CMLOG_SUCCESS.

3.3 A Simple Browser Example

Here is a simple example that does a single query to a server.

#include <cmlogBrowser.h>

static void qcallback (int status, void* arg, cmlogPacket* data)
{

cdevData*x res = 0;

int severity;

char text[1024];

char host[80];

if (data) {
cmlogMsg** msgs = data->messages ();
for (int i = 0; i < data->numberOfData (); i++) {
cmlog_cdevMessage& idata = (*msgs[i]);
res = idata.getData ();

if (res) {
res->get ("host", host, sizeof (host));
res->get ("severity", &severity);
res->get ("text", text, sizeof (text));

printf ("From Host %s with Severity %d: %s\n", host, severity, text);

}

for (i = 0; i < data->numberOfData (); i++)
delete msgs[il;

delete [Imsgs;

}

char *selection = ‘‘facility == ’EPICS’ && severity == 10’’;

High Performance Computing Group

CMLOG

main (int argc, char **xargv)

{
cmlogBrowser browser;
char command [1024] ;
char attr[80];
int status;
if (browser.connect () == CMLOG_SUCCESS) {
printf ("Connect to the cmlogServer\n");
printf ("Enter cmlog test command\n");
scanf ("%s", command);
if (strcasecmp (command, "query") == 0) {
printf ("Enter start and end time in double value\n");
double start, end;
scanf ("}1f %1f", &start, &end);
cdevData data;
data.insert ("start", start);
data.insert ("end", end);
data.insert (‘‘queryMsg’’, selection);
status = browser.queryCallback (command, data, qcallback, 0);
browser.pend ();
}
}
}

The following is a sample Makefile for above C++ code (browserTest.cc) on a Unix machine (let
us assume this machine is a Solaris)

CXX = CC
CXXFLAGS = -I$(CMLOG)/include -D_CMLOG_BUILD_CLIENT

0BJS
LIBS

browserTest.o
-L$(CMLOG) /1ib/solaris -lcmlogb -lsocket -lnsl

all: browserTest

borwserTest: $(0BJS)
rm -f $@
$(CXX) -o %@ $(LIBS)

.CC.O:
rm -f $0
$(CXX) $(CXXFLAGS) -c $< -0 $@

High Performance Computing Group

CMLOG

clean:
rm -f *.0 browserTest core *~

3.4 Query Messages from Browser

Applications may send a selection rule to the server to filter out messages that do not qualify. A
selection rule is specified as a character string with syntax of C logic expressions using known tag
names as variables of expressions. For example the following selection specifies that a caller wants
messages to have facility “epics” and severity with value 3:

facility=="epics’ && severity==

In addition pattern match can be performed similar to SQL such as “text like ’error message”’. If ap-
plications provide wrong syntax, the server will send CMLOG_QUERYMSG_ERR back. The following
is the definition of syntax for query messages:

messages : message
| messages && messages
| messages || messages
| ! messages
| (message)

message : tagname logicop tagvalue

where logicop could be ==, <, >, ! =, <=, >= and like, and tagvalue can be data of type of int,
double, float, and single quoted char string.

4 Sample Motif Browser: cmlog

A sample X window Motif implementation of browser is implemented. This browser supports moni-
toring/querying with multiple windows. Currently it only supports simple query with specified time
interval with logic expressions as selection message. The browser is configured by a configuration file
that specifies what tags the browser is interested. The geometry layout of browser can be adjusted to
fit widths of tagged values.

The following command line options are supported as of version 2.0:

e -c: Automatic connect to the server.
e -u: Automatic connect to the server and put in the updating mode.

e -q: Automatic connect to the server and perform a query with specified query message and a
time interval from config file.

e -hu: Does everything as the previous option plus putting in the updating mode when the query
is finished.

e -f: Use a user specified configuration file.
e -cfg: Use a user specified configuration file.

e -h Print out command line help menu.

High Performance Computing Group

CMLOG

The cmlog searches a configuration file in the following order: 1) -f or -cfg, 2) .cmlogrc in the user
home directory and 3) CMLOG_CONFIG environment variable specifying a file location. If syntax
errors are detected during start up of cmlog, the default setting will be used.

The cmlog chooses a default file to save current settings in the following way. If there is a config-
uration file provided other than the CMLOG_CONFIG file, the configuration file will be used as the
default. If there is no configuration file, .cmlogrc in the user home directory will be the default file.
Finally if the configuration file is the CMLOG_CONFIG, the .cmlogrc in the user home directory is
the default.

In addition the cmlog allows users to save current display into an ASCII file from “Save Screen”
menu, to cancel a long query, to convert set of integer values of a tag to strings, to display values in
different colors and to blink, to bell or to do an action (user script) color coded values (bell and user
actions will only be effective in the updating mode).

The following is a sample configuration file for cmlog:

Configuration file for cmlog
Name of this config
name MCC Control

Type Title Tag Width

Col Facility facility 98
Col Host host 90
Col User user 48
Col Time cmlogTime 178
Col Status status 49
Col Severity severity 79
Col Message text 250
Buffer size for updating the message

ubufsize 2000

Default query message

queryMessage ‘‘none’’ -36:0 now

Default update selection message

updateMessage ‘‘none’’

Window Width
windowWidth 977
Window Height
windowHeight 500
#Code Conversion

codeConversion ‘‘none’’ Severity

{

0 Info Green

1 Infol Blue

2 Info2 LightBlue

3 Warning Yellow flash:bell:action
4 Fatal Red flash

}

#Code Conversion

High Performance Computing Group

CMLOG

codeConversion ‘‘Facility == ’EPICS’ ’’ status

{

100 Info Blue

101 Infol Blue

102 Info2 LightBlue

103 Warning Yellow blink:bell:dosomething
104 Fatal Red doother:flash

}

Note: “none” in queryMessage or updateMessage stands for no message.

Note: End time “now” in queryMessage stands for current time.

Note: Correct syntax to specify time interval in the queryMessage can be one of the followings: “H
stands for hour, M stands for minutes, m stands for months, d stands for days in a month and Y stands
for long year (1999 not 99).

Note: The second field of codeConversion line identifies sources of data. In particular cmlog converts
integer fields to string representations the same way regardless data sources if "none” is specified.
Note: The first column within a code conversion denotes integer values that will be converted to string
representations that are shown in the second column. The values in third column give background color
of those strings. The optional value in the forth column enables blinking of color coded values, ringing
a bell or doing a user defined action.

5 Miscellaneous Information

This section summaries all executables and libraries of CMLOG.

e Executables for Unix Machines

cmlogServer

This is the server for CMLOG system. It takes one argument that is configuration
file. If no argument is provides, default configuration parameters are used.

cmlogClientD

This is the client daemon running on a Unix machine. We suggest this process is
started by root. The cmlogClientD can also be compiled using CMLOG_CLIENTD_AUTO_QUIT
option to tell the clientDaemon to quit when the cmlogServer exits.

— cmlog_activate

This is a csh script to start cmlogClientD.

cmlog
This is the Motif browser for CMLOG system.
cmlogMsg

This is a simple message logging porgram to let users log messages into cmlog
system. It may be used as a quick test for cmlog system. It can be invoked as
cmlogMsg “any messages”.

cmlogCleanup

High Performance Computing Group

CMLOG

This exists only on HP_UX and Linux. It cleans all IPC resources if the server
crashes unexpectly.

— cmlogAdmin

This is an administration utility. It is partially finished. It can be used to shutdown
the server and all client daemons and to check some statistical information of the
server.

e Executables for vx Works

— cmlogClientD
This is the clientDaemon running on a vxWorks target. It runs at priority 190.
This must be loaded first before any other CMLOG libraries/executables.

— cmlogVxLogMsg

This is a utility that can catch all logMsg calls of vxWorks. It then will send catched
messages to the above daemon. It runs at priority of 200.

e Libraries for Unix Machines

— libecmlog.a(so)
This is the logging client library. Applications need to link with this library to log
messages to a server.

— libcmlogb.a
This is the browser library.

— cmlogService.so

This is the cmlog service layer for CDEV.
e Libraries for vxWorks

— libcmlog.a

This is the logging client library. Applications need to link with this library to log
messages to a server. This library has to be loaded after cmlogClientD.

6 Acknowledgment

Special thanks to Ron MacKenzie at SLAC who has spent long hours to design, discuss and test cmlog
version 2.0. Many thanks to David Abbott at Jefferson Lab for his effort to port and test cmlog on
different platforms running VxWorks and Linux. Many thanks to Johannes van Zeijts at BNL and
Thomas Birke at BESSY for their testing and valuable suggestions. Finally thanks to anyone who have
made any suggestion, comment and feedback to the system.

High Performance Computing Group

