Precise Measurement of EMC Effect in Few Body Nuclei And at Large X

Jlab expt E03-103; Spokespersons: John Arrington and Dave Gaskell

For the E03-103 collaboration

Aji Daniel
University of Houston.
Thesis Advisor: Ed V. Hungerford

Hall C User's Meeting 01.25.07
Outline

• Motivation and existing data
• Jlab experiment E03-103
• Analysis status
• Preliminary results
Measurements of F_{2A}/F_{2D} have demonstrated modifications of quark distributions in nuclei.

Magnitude depends on A but shape more or less same.

Several models, but valid only in certain kinematical regions.
Introduction

EMC effect

- Extensive measurements on heavy targets (SLAC, NMC, BCDMS ...)
- But poor precision at large \(x \)
- Limited world data for light nuclei

E03-103 main goals

First measurement of EMC effect on \(^3\text{He}\) for \(x > 0.4 \)

Precision data at large \(x \) for heavy nuclei
Introduction

Ratios can be parameterized as log(A) or linear density dependence.

$^{4}\text{He}/\text{D}$ is more sensitive, but uncertainty is large for existing data and consistent with both parameterizations.

Addition of ^{3}He data will help to determine if EMC effect depends on nucleon number (A) or average nuclear density (ρ).
Ran summer and fall of 2004 in HALL C of JLAB with 5.77 GeV.

Cryo targets

\[\text{H, } ^2\text{H, } ^3\text{He, } ^4\text{He} \]

Solid targets

\[\text{^9Be, } ^{12}\text{C, } ^{27}\text{Al, } ^{63}\text{Cu, } ^{197}\text{Au} \]

Additional data at 5 GeV on carbon and deuterium to investigate \(Q^2 \) dependence in the EMC ratios.
Elastic yield: SIMC analysis

Representative detector distributions

Cross checking the elastic yields with Hall C Monte Carlo

Yield Ratios
Analysis
Model iteration

Same cross section model for radiative corrections, bin centering and Coulomb corrections $2 < Q^2 < 10 \text{ GeV}^2$

For all X

LD2 model \rightarrow E. Christy F_{2p} fit + P. Bosted F_{2n} fit (free n) + smearing (QE parameters from XEM data)

See N. Fomin's Talk

Nuclear model

\[\text{sig_born_total} = \text{sig_born_inel} + \text{sig_born_qe} \]

$X < 0.8 \rightarrow F_{2D} \times \text{emc_fit}$

$X > 0.9 \rightarrow \text{smearing}$

\[(\text{QE parameters from xem data})\]

$0.8 > X > 0.9 \rightarrow X \text{ weighted average}$
Analysis

Radiative corrections

Negligible nuclear elastic contribution, so we ignore it.
(P. Bosted Code)
Model iteration

Subset of XEM data: data to model ratio

LD2 total

He4 total

C total

Cu total
Corrections to data
Isoscalar corrections

F_{2n}/F_{2p} correction large for 3He and heavy nuclei @ large X.

(at large X, size of the correction $\sim 15\%$)

SLAC parametrization: $1 - 0.8x$

NMC: $F_{2n} = F_{2D} - F_{2p}$

CTEQ fit: global fit @ 10GeV^2

SLAC fit is used for this analysis
Corrections to data
Coulomb corrections

Incoming and scattered electron kinematics are shifted and a correction factor is determined using the born model to account for the coulomb distortion effects.

\[
\text{correction factor} = \frac{\sigma_{\text{Born}}}{(F^2 \cdot \sigma_{\text{BornShifted}})}
\]

F is the focusing factor which accounts for the focusing of incoming electron wave in the nuclear center.

Corrections to data
Charge symmetric background

For heavy nuclei and at low X
Signal~ background

e^+ and e^- data acquisition on HMS
Preliminary results

Scaling of F_2

\[\xi \] is the Nachtmann variable and at large Q^2, \[\xi \sim x \]

In nuclei, extended scaling in resonance region due to increased Fermi smearing
Preliminary results

Q^2 dependence in the emc ratios

At $X=0.7$, $Q^2:4-6\text{ GeV}^2$

XEM error bars are only statistical
Preliminary results
EMC ratios in ξ

E139 DIS region
E89008 Resonance region

Preliminary results indicate no significant A dependence for the cross over at large ξ

XEM error bars are only statistical
Preliminary results

EMC ratios for 4He and C

4He and C: Isoscalar nuclei
Small Coulomb distortions

No significant difference in size and shape of the effect

XEM error bars are only statistical
Preliminary results

^3He EMC ratios: without isoscalar correction

Result very sensitive to isoscalar corrections

XEM error bars are only statistical
HERMES normalization 0.9%
XEM normalization 1.9%
(large temperature and pressure derivatives)
Preliminary results

3He EMC ratios: with isoscalar correction

Result very sensitive to isoscalar corrections
HERMES used NMC fit
XEM: SLAC fit (1-0.8x)

XEM error bars are only statistical
HERMES normalization 0.9%
XEM normalization 1.9%
(large temperature and pressure derivatives)
Summary

- Study of the EMC effect in light nuclei will help us to distinguish between models and impose new constraints.

- E03-103 data in resonance region allows to study the large x behavior of EMC ratios. Need to look into detailed scaling studies.

- Precise measurement of Q^2 dependence of F_2 and EMC ratios.

- Systematic uncertainties and model dependency of radiative corrections and isoscalar corrections are still under investigation.
XEM Collaboration

J. Arrington (spokesperson), L. El Fassi, K. Hafidi, R. Holt,
Argonne National Laboratory, Argonne, IL

B. Boillat, J. Jourdan, M. Kotulla, T. Mertens, D. Rohe, G. Testa,
R. Trojer
Basel University, Basel, Switzerland

B. Filippone
California Institute of Technology, Pasadena, CA

C. Perdrisat
College of William and Mary, Williamsburg, VA

D. Dutta, H. Gao, X. Qian
Duke University, Durham, NC

W. Boeglin
Florida International University, Miami, FL

M.E. Christy, C.E. Keppel, S. Malace, E. Segbefia, L. Tang,
V. Tvaskis, L. Yuan
Hampton University, Hampton, VA

G. Niculescu, I. Niculescu
James Madison University, Harrisonburg, VA

B. Clasie, J. Seely
Massachusetts Institute of Technology, Cambridge, MA

J. Dunne
Mississippi State University, Jackson, MS

V. Punjabi
Norfolk State University, Norfolk, VA

A.K. Opper
Ohio University, Athens, OH

H. Nomura
Tohoku University, Sendai, Japan

M. Bukhari, A. Daniel, N. Kalantarians, Y. Okayasu, V. Rodriguez
University of Houston, Houston, TX

F. Benmokhtar, T. Horn
University of Maryland, College Park, MD

D. Day, N. Fomin, C. Hill, R. Lindgren, P. McKee, O. Rondon,
K. Slifer, S. Tajima, F. Wesselmann, J. Wright
University of Virginia, Charlottesville, VA

R. Asaturyan, H. Mkrtchyan, T. Navasardyan, V. Tadevosyan
Yerevan Physics Institute, Armenia

S. Connell, M. Dalton, C. Gray
University of the Witwatersrand, Johannesburg, South Africa