Electron Beam Polarimetry at JLab

- Experiments using polarized electrons at JLab
- JLab polarized beam
- Polarimetry at JLab:
 - Mott polarimetry
 - Møller polarimetry
 - Compton polarimetry
- Special challenges of new experiments
- Possible improvements in polarimetry (outlook)
SIMULTANEOUS COMPLEMENTARY EXPERIMENTS

HALL A
Pair of identical High Resolution Spectrometers (HRS2)

HALL B
CEBAF's Large Acceptance Spectrometer (CLAS) and Bremsstrahlung Photon Tagger

HALL C
High Momentum Spectrometer (HMS) and Short Orbit Spectrometer (SOS)
More than half of all experiments in Halls A/B/C are using the longitudinal beam polarization:

Single Spin: Parity Violation Experiments

- Parity violation
- \(e^- p, A \rightarrow e^- p, A \) elastic: formfactors HAPPEX, G0, SM QWEAK
- \(e^- A \rightarrow e^- A \) elastic: nuclear physics \(^{208}\)Pb
- \(e^- p \rightarrow e^- X \) inelastic: SM

\[A_{obs} \propto P_{beam} \times A_{reaction} \]

Double Spin Experiments

- \(e^- p \rightarrow e^- \vec{p} \) elastic: formfactors \(G_E^p \)
- \(e^- \vec{N} \rightarrow e^- N \) elastic: formfactors \(G_E^n \)
- \(e^- \vec{N} \rightarrow e^- X \) inelastic: structure functions, GDH

\[A_{obs} \propto P_{beam} \times P_{target} \times A_{reaction} \]
\[A_{obs} \propto P_{beam} \times A_{recoil} \times A_{reaction} \]

Typically, \(\sigma P_{beam}/P_{beam} < \sigma P_{target}/P_{target} \)
Features of CEBAF Operations

- Beam energy 0.8 - 6.0 GeV, current 0.01 - 100 μA
- 3 Halls are running simultaneously with different beam energies and currents
 - The beam may interfere with beams to other halls
 - Spin precession in different halls is different
- Operations, invasive for other halls are better avoided
Electron Beam Polarimetry at JLab

Continuous Electron Beam Accelerator Facility

Gain switched diode lasers
499 MHz, $\Delta \phi = 120^\circ$

Pockels cell

Gun

0.4 GeV linac
(20 cryomodules)
1497 MHz

45 MeV injector
(2 1/4 cryomodules)
1497 MHz

RF separators
499 MHz

Double sided septum
Features of CEBAF Injector

- Strained GaAs provides $\mathcal{P} \sim 80\%, I < 80 \, \mu A$
- 30Hz helicity flip
- 2 ways to attenuate the beam:
 - Laser light attenuation
 - Electron chopper slit
- Opposite beam polarization in some halls
- Laser dark current \Rightarrow leak of a wrong laser through the slit

The beam polarization may be diluted by a leak through from another hall beam.

- Current dependent
- Depends on the other hall operation

The beam polarization may depend on the current
Electron Beam Polarimetry at JLab

CEBAF Polarization dependence on laser phase

August 13, 2004

E. Chudakov
Electron Polarimetry at JLab

Injector

- Mott polarimeter at 5 MeV, $\sigma_{syst} \sim 3\% \Rightarrow 1\%$ (?)

Hall A

- Møller polarimeter, 2 arm 0.8-6.0 GeV, $\sigma_{syst} \sim 3\%$
- Compton polarimeter >2 GeV, $\sigma_{syst} \sim 1-2\%$

Hall B

- Møller polarimeter, 2 arm 0.8-6.0 GeV $\sigma_{syst} \sim ?$

Hall C

- Møller polarimeter, 2 arm 0.8-6.0 GeV $\sigma_{syst} \sim 1.5(0.5)\%$

- Description of the polarimeters
- Cross-calibration of the polarimeters
0.1-10 MeV: $e^- \uparrow + Au \rightarrow e^- + Au$

Analyzing power - Sherman functions $\sim 1-3\%$:

- Dirac equation on a pure Coulomb potential
- Nucleus thickness: phase shifts of scat. amplitudes
- Spin rotation functions
- Other: electron screening, radiative corrections etc

- Multiple and plural scattering
- No energy loss should be allowed
- Single arm - backgrounds are important

Typical target: Au foils $0.01-1.00\mu m$ thick $\Rightarrow 0$ thickness
Measurements 5 MeV and ~ 1 μA

Careful shielding
Veto detectors
Energy measured

\[\sigma(\mathcal{P})/\mathcal{P} = 1\%(\text{Sherman}) \oplus 0.5\%(\text{other}) \] (unpublished)

- Low current measurement
- Invasive for all 3 halls at CEBAF
\[
\bar{e}^- + e^- \rightarrow e^- + e^- \quad \text{QED (unpolarized: Møller, 1932)}.
\]

\[
\frac{d\sigma}{d\Omega_{CM}} = \frac{d\sigma_0}{d\Omega_{CM}} \cdot (1 + \sum_{i=X,Y,Z} (A_{ii} \cdot \mathcal{P}_{\text{targ} i} \cdot \mathcal{P}_{\text{beam} i}))
\]

\[
\frac{d\sigma_0}{d\Omega_{CM}} \approx \frac{r_e^2}{4\gamma^2} \cdot \left(\frac{4 - \sin^2\theta_{CM}}{\sin^2\theta_{CM}}\right)^2 \quad \text{in CM, or}
\]

\[
\frac{d\sigma_0}{d\Omega} \mid_{\theta_{CM}=90^\circ} \approx 176 \text{ mbarn/ster} \quad \text{in LAB}
\]

Asymmetry:

\[
A_{ZZ} = -\frac{\sin^2\theta_{CM} \cdot (7 + \cos^2\theta_{CM})}{(3 + \cos^2\theta_{CM})^2}
\]

\[
A_{XX} = -\frac{\sin^4\theta_{CM}}{(3 + \cos^2\theta_{CM})^2}, \quad A_{YY} = -A_{XX}
\]

At \(\theta_{CM} = 90^\circ\) \(A_{ZZ} = 7/9, \quad A_{XX} = -A_{YY} = -1/9\)
Møller Polarimetry

Advantages:

- High analyzing power at $\theta_{CM} = 90^\circ$ $A_{ZZ} = 7/9$
- $\frac{dA_{ZZ}}{d\theta_{CM}}|_{\theta_{CM}=90^\circ} = 0$ - small systematics
- Large cross-section
- 2 particles in the final state with $E \sim E_0/2$: coincidence eliminates backgrounds

Disadvantages mainly come from the target choice of magnetized ferromagnetics:

- Relatively low polarization $\sim 8\%$
- Beam current limit ($\sim 1 \, \mu A$) due to target heating
- Systematic errors on the target polarization
- Kinematic distortion of scattering on K,L-shell electrons ("Levchuk effect")
So far, Möller polarimeters used ferromagnetic foils, magnetized in an external field, for the target.

Features of the Fe group:

- **3D shell only partially filled**: $3d^6$ - 4 electrons missing
- Overlap of the wave-functions with neighbour atoms and electron gas: "exchange force" aligning spins on $3d^6$ in the SAME direction. In Fe atom, $\; 2.22 \; e^- \; $ aligned at saturation
- "Quenching" - orbital momentum contribution cancelled, magnetization is caused by the spins
- Magnetization drops with temperature and comes to 0 at $T_c \approx 800 \; ^\circ C$

Materials used:

- Pure Fe - best understood and studied
- Alloys, like permendur: Fe(49%), Co(49%), V(2%) - more easily magnetized
Ferromagnetic Targets: Polarization

\[P_{foil} = B_{foil} \cdot \frac{g'-1}{2\pi g'} \cdot \frac{1}{N_e \mu_B} \], where

- \(B_{foil} \) - magnetic field in the foil
- \(g' = 1.900 \pm 0.005 \) - spin/orbital correction, supermendur
- \(g' = 1.919 \pm 0.002 \) - spin/orbital correction, Fe
- \(N_e = \rho \cdot A\nu \cdot Z/A \) - electron density
- \(\mu_B \) - Bohr magneton

Magnetization in an external field

Boundary conditions on a surface:

- \(B_{perpend} = \text{const} \) and \(H_{parallel} = \text{const} \)

Two ways to magnetized the target foil are used:

- \(B_{parallel} \sim 100 - 300 \text{ Gs} \), foil at \(\sim 20^\circ \)
- \(B_{perp} \sim 3 - 4 \text{ T} \) “brute force”
Foil in “Weak” Field

- Used everywhere, except in Hall C at JLab
- External $B \sim 80 - 600$ Gs, parallel to the beam
- Target foil 10-100 μm thick at $\sim 20^\circ$ to the beam
- Important: annealing, mechanical treatment

The magnetic flux through the foil can be measured with a pickup coil wound around the foil, and:

$$\Phi = \int \varepsilon(t) dt, \quad B_{foil} = \Phi/(\text{width} \cdot \text{thick}) = \Phi \cdot \rho \cdot \text{length/weight}$$

Measuring Φ: different methods.

Hall A: constant field, removing the foil from the coil

$$P_{foil} = \frac{g'-1}{2\pi g'} \cdot \frac{1}{\mu_B} \cdot \Phi_{foil} \cdot \frac{\text{length} \cdot A}{\text{weight} \cdot Av \cdot Z}$$

- Measured: an average over a large surface
- Foil's non-uniformity
- At the end, different foils compared give $\sigma(P)/P \sim 3\%$
Foils in Saturating Fields

- Used in Hall C at JLab
- External $B \sim 4 \, T$, parallel to the beam
- Target foils $4-10 \, \mu m$ thick perpendicular to the beam
- Important: annealing, mechanical treatment

The foil should be fully saturated.

Attempts to measure the magnetization with the Kerr effect: rotation of the polarization plane of the reflected light.

Problems:

- Rotation angle is a fraction of a degree only
- Field on the surface and in the bulk may be different (band theory)

Good relative measurements have been done: saturation at $2.8 \, \text{Tm}$, temperature dependence.

The magnetization value was taken from literature.

Claim: $\sigma(P)/P \sim 0.25\%$
Møller Polarimeter Optics

- Single arm used with pulsed beams (SLAC)
 BG~10-30% from radiative Mott
- Double arm - practically no background

Optic selection:

- Use Møller θ-p correlation: quad focussing
- Use Møller $E \sim E_0/2$: dipole deflection
- Select an acceptance of $80^\circ < \theta_{CM} < 100^\circ$ or so
2 quadrupole magnets and many movable collimators.
2-3 quadrupole magnets and a dipole.
Levchuk Effect

Noticed in 1994. Many polarimetry measurements done before were wrong by 5-10%!

Main points:

- Scattering on K-shells distorts the θ-p correlation
- A strong optical focussing in exploiting the θ-p correlation
- Acceptance of electrons, scattered on K-shells (unpolarized) and D-shells (polarized) is different ($K<D$):
 the effective target polarization is larger!

A correction is needed, or the optics should minimize the effect (Hall A).
\[A_{\text{obs}} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}} \approx \overline{A_{ZZ}} P_{\text{targ}} P_{\text{beam}} \cdot \kappa_{\text{transv}} \kappa_{BG} \kappa_{DT} \kappa_{\text{Lev}} + \Delta_{\text{false}} \]

\[\kappa = (1 + \Delta) \approx 1 \] - corrections

Statistical error: ±1% per ~2 min

- \(\overline{A_{ZZ}} \sim 0.758 - 0.772 \) - simulation

- \(P_{\text{targ}} = P_{\text{foil}} \cdot \cos \alpha_{\text{targ}} \) - target polarization
 - \(P_{\text{foil}} \) - magnetization measurement
 - \(\cos \alpha_{\text{targ}} \) target-beam angle \(\sim 20^\circ \& 160^\circ \)

- \(\Delta_{\text{transv}} \) influence of transverse polarization,
 Measuring at \(\alpha_{\text{targ}} \sim 25^\circ \& 155^\circ \) helps

- \(\Delta_{BG} \) non–polarized background, \(\sim 30 - 70\% \) in single arm, depending on \(E_{\text{beam}} \), low in coincidence.
 Accidental coincidences are subtracted.

- \(\Delta_{DT} \) dead time of electronics

- Levchuk effect

- Observed fluctuations, (beam current?)

Total systematic error: 3.4%
Møller Hall C: Systematic Errors

<table>
<thead>
<tr>
<th>source</th>
<th>uncertainty</th>
<th>A error</th>
</tr>
</thead>
<tbody>
<tr>
<td>beam position X</td>
<td>0.5 mm</td>
<td>0.15%</td>
</tr>
<tr>
<td>beam position Y</td>
<td>0.5 mm</td>
<td>0.03%</td>
</tr>
<tr>
<td>beam direction X</td>
<td>0.15 mr</td>
<td>0.04%</td>
</tr>
<tr>
<td>beam direction Y</td>
<td>0.15 mr</td>
<td>0.04%</td>
</tr>
<tr>
<td>current Q1</td>
<td>2%</td>
<td>0.10%</td>
</tr>
<tr>
<td>current Q2</td>
<td>1%</td>
<td>0.07%</td>
</tr>
<tr>
<td>position Q2</td>
<td>1 mm</td>
<td>0.02%</td>
</tr>
<tr>
<td>multiple scattering</td>
<td>10 %</td>
<td>0.12%</td>
</tr>
<tr>
<td>Levchuk effect</td>
<td>10 %</td>
<td>0.30%</td>
</tr>
<tr>
<td>position collimator</td>
<td>0.5 mm</td>
<td>0.06%</td>
</tr>
<tr>
<td>target temperature</td>
<td>50 %</td>
<td>0.05%</td>
</tr>
<tr>
<td>direction of B-field</td>
<td>2°</td>
<td>0.06%</td>
</tr>
<tr>
<td>value of B-field</td>
<td>5%</td>
<td>0.03%</td>
</tr>
<tr>
<td>target polarization</td>
<td></td>
<td>0.25%</td>
</tr>
<tr>
<td>dead time</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>beam current</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>0.25%</td>
</tr>
</tbody>
</table>
Compton Polarimetry

\[\bar{e}^- + (h\nu)_\sigma \rightarrow e^- + \gamma \quad \text{QED.} \]

\[k(\text{GeV}) \]

1

10^-1

0 100 200 300
\(\theta_\gamma (\mu\text{rad}) \)

\[k_{\text{max}} = 2.12\text{GeV} \quad E = 12\text{GeV} \quad k = 1.165\text{eV} \]

\[k_{\text{max}} = 1.00\text{GeV} \quad E = 8\text{GeV} \quad k = 1.165\text{eV} \]

\[k_{\text{max}} = 0.27\text{GeV} \quad E = 4\text{GeV} \quad k = 1.165\text{eV} \]

Compton edge:
\[k_{\text{max}}' \approx 4y\gamma^2k, \]
\[y = \frac{1}{1+4k\gamma/m} \sim 1 \]

Asymmetry:
\[A \propto kE, \]
Max asymmetry:
\[A_{\text{max}} \approx \frac{1-y^2}{1+y^2}, \]
Compton Polarimetry

- Detecting the γ at 0 angle
- Detecting the e^- with an energy loss
- Strong $\frac{dA}{dk'}$ - good energy resolution for photons
- Photon energy cutoff
- Time needed for a measurement:
 \[T \propto \frac{1}{(\sigma \cdot A^2)} \propto \frac{1}{k^2} \times \frac{1}{E^2} \]
- Small crossing angle needed
- Non-invasive measurement

Very good polarimetry at high energy or/and high current (storage rings)

August 13, 2004
E.Chudakov
24
Compton Polarimeter in Hall A

- Laser Nd:YAG 230 mW, $E_{h\nu} = 1.165$ eV, $E\lambda = 1064$ nm
- Monolithic 85 cm Fabry-Pérot cavity: $G \sim 8000$, 1500 W, $P \sim 99.3\%$
- Crossing angle 23 mrad
- Chicane of 4 dipoles for the beam
- Photon detector at 0° $2 \times 2 \times 23$ cm3 PbWO 5×5
- Electron detector Si μ-strip $48 \times 600 \mu$m $\times 4$ planes
The electron detector is used for calibration. Limitations:

- μ-strip pitch $\Rightarrow \sigma_E \sim 5$ MeV
- Low energy - acceptance loss

Good agreement with the observed spectrum

Gain drift correction
Compton Errors (Hall A)

Conditions: beam 4.5 GeV, 40 μA, 40 min run

<table>
<thead>
<tr>
<th>Source</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymmetry</td>
<td></td>
</tr>
<tr>
<td>Statistical</td>
<td>0.80%</td>
</tr>
<tr>
<td>Position and angle</td>
<td>0.30%</td>
</tr>
<tr>
<td>Background</td>
<td>0.05%</td>
</tr>
<tr>
<td>Dead time</td>
<td>0.10%</td>
</tr>
<tr>
<td>Cuts</td>
<td>0.10%</td>
</tr>
<tr>
<td>Light</td>
<td></td>
</tr>
<tr>
<td>Polarization</td>
<td>0.50%</td>
</tr>
<tr>
<td>Analyzing power</td>
<td></td>
</tr>
<tr>
<td>Response function</td>
<td>0.45%</td>
</tr>
<tr>
<td>Calibration</td>
<td>0.60%</td>
</tr>
<tr>
<td>Pile up</td>
<td>0.45%</td>
</tr>
<tr>
<td>Rad. correction</td>
<td>0.26%</td>
</tr>
<tr>
<td>Total systematic</td>
<td>1.15%</td>
</tr>
<tr>
<td>Total</td>
<td>1.40%</td>
</tr>
</tbody>
</table>
Comparison of Different Polarimetry Techniques

A comparison of polarimetry methods at 4.5 GeV.

<table>
<thead>
<tr>
<th>Type</th>
<th>$T_{1%}$ Stat</th>
<th>Syst. error</th>
<th>beam μA</th>
<th>Invasive?</th>
<th>Energy GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mott</td>
<td>5 min</td>
<td>3(1)%</td>
<td>1</td>
<td>yes</td>
<td>0.005</td>
</tr>
<tr>
<td>Moller A</td>
<td>2 min</td>
<td>3%</td>
<td>0.3-1.0</td>
<td>yes</td>
<td>0.8-6</td>
</tr>
<tr>
<td>Moller C</td>
<td>5 min</td>
<td>1.5(0.5)%</td>
<td>0.5-1.0</td>
<td>yes</td>
<td>0.8-6</td>
</tr>
<tr>
<td>Compton</td>
<td>40 min</td>
<td>1.1%</td>
<td>20-100</td>
<td>no</td>
<td>>2</td>
</tr>
</tbody>
</table>

Cross-calibration of polarimeters

One laser: DC
Slits open
Spin rotation

August 13, 2004 E.Chudakov
Future experiments at JLab

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Syst. err without pol</th>
<th>Polar. error</th>
<th>Stat. error</th>
<th>Energy GeV</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^4\text{He}\ \rho_s$</td>
<td>0.6%</td>
<td>2.0%</td>
<td>2.2%</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>$^{208}\text{Pb}\ \text{n-skin}$</td>
<td>0.5%</td>
<td>1.0%</td>
<td>3.0%</td>
<td>0.85</td>
<td>?</td>
</tr>
<tr>
<td>$\text{eP } sin^2\theta_W$</td>
<td>2.4%</td>
<td><1.4%</td>
<td>2.8%</td>
<td>1.16</td>
<td>?</td>
</tr>
<tr>
<td>DIS $sin^2\theta_W$</td>
<td>0.3%</td>
<td><1.0%</td>
<td>0.8%</td>
<td>10.0</td>
<td>distant</td>
</tr>
</tbody>
</table>

For 2 experiments at low energy there is no clear way to each the accuracy needed using the existing polarimeters.

- Compton: uncomfortably low energy
- Moller with Fe target: low current

Improvements Considered

- Compton: green laser (still marginal performance)
- Moller: 100% polarized atomic hydrogen target
Møller Polarimetry with Atomic Hydrogen Targets

Advantages:

- 100% electron polarization
- hydrogen target: no Levchuk effect, low background
- high beam current

Goal:

\[\sim 0.5\% \text{ systematic error} \]

Atomic hydrogen ground state: \(\vec{\mu}_H \sim \vec{\mu}_e \)

Stored in a trap at \(\sim 300 \text{ mK} \):

- Z: solenoid field \(B_{max} \sim 5 - 8 \text{ T} \), energy \(\sim \vec{\mu} \cdot \vec{B} \)
- R: copper cylinder \(d \sim 3 \text{ cm} \), superfluid He film
- Density \(\sim 3 \cdot 10^{15} \text{ H/cm}^3 \)
- Polarization \(\sim 1 - \mathcal{P} \sim \exp\left(\frac{-2\vec{\mu}B}{kT}\right) \sim 10^{-15} \),
 hyperfine interaction: \(\sim 1 - \mathcal{P} \sim 10^{-6} \)
- Lifetime: recombination (3-body coll., surfaces) \(> 1000 \text{ sec} \)
- Self-cleaning time \(\sim 2 \text{ msec} \)
- Filling the cell: several minutes

Statistical accuracy 1% in \(\sim 30 \text{ min} \) at 30 \(\mu \text{A} \)
Conclusion

- Various polarimetry techniques are used in JLab
- Polarimetry errors become the dominant one for the planned parity violation experiments
- An accuracy of $\sim 1.5\%$ is achieved at 2-6 GeV
- New methods are considered for improving the accuracy in the full range of CEBAF 0.8-6 GeV. Using of atomic hydrogen may provide a superb error of $\sim 0.5\%$