Longitudinal Data and g1

Ryan Zielinski
3/8/17
Overview

- Last week showed Born polarized cross sections (DS) with systematic error
- This week will go one step further and extract g_1 and evolve to constant Q^2
 - Keeping track of the systematic errors as I go
- Focusing on longitudinal data for this week
- With SSF’s can then evaluate moments!
- Just for clarity: longitudinal data -> 2.2 GeV 5T, $\theta = 5.77^\circ$
Extracting the SSF

\[g_1 = \frac{M Q^2}{4 \alpha_e^2} \frac{y}{(1 - y)(2 - y)} \left[\Delta\sigma_\parallel + \tan\frac{\theta}{2} \Delta\sigma_\perp \right] \]

Use MAID/Hall B/Assume 0 for perpendicular component and take STD of \(g_1 \) as systematic.

For 5.77° \(\rightarrow 0.05 \)

Additional systematic from perp: 1-2%
Evolving to Constant Q^2

Method: Run HallB/Maid models at the Q^2 of the data and the Q^2 I want to evolve it to

Apply correction of form $\delta = (Q_{\text{data}}/Q_{\text{const}})[(\text{Model}(Q_{\text{const}}) - \text{Model}(Q_{\text{data}})]$

Difference between HallB and MAID results is systematic
Comparing with Hall B

Test evolution procedure on Eg1b data
Data taken from clas database: http://clas.sinp.msu.ru/jlab/
Comparing with Hall B

Compare g2p longitudinal data with lowest Q^2 Eg1b data
\[\gamma_0(Q^2) = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 \left[g_1(x, Q^2) - \frac{4M^2}{Q^2} x^2 g_2(x, Q^2) \right] dx. \]
Explaining the Previous Slide

- Blue band is updated Pascalutsa calculation that Vince sent to mailing list
- Grey band is Meissner calculation from same email
- Inner error bars are statistical/outer are total (sys/stat add in quadrature)
- Checked integration using Seonho Choi’s Better Simpson routine and python trapezoidal integration
 - Better Simpson also does uncertainty calculation and agrees with Monte-Carlo method
- Additional systematics:
 - g_2 contribution: 30% change in g_2 creates a 12% spread in γ_0 -> Assume 12% additional systematic added in quadrature
 - Integrate by samples error:
 - Compare an integration by samples at same binning as g2p data of HallB γ_0 to gaussian quadrature integration where integration calls HallB model whenever it needs it
 - New systematic 3%
 - Low x-portion (as evaluated in HallB model) is three orders of magnitude smaller than measured contribution so ignore
Going Forward

- Longitudinal data looks good and at lower Q^2 than previously published
- Have confidence in my moment calculations and integration
- Moving onto other g_1 quantities and also our transverse data
- Questions/Comments/Concerns?