New Measurement of the EMC effect for Light Nuclei and Global Study of the A-Dependence

Patricia Solvignon
Argonne National Laboratory

ECT 2008 Workshop
Nuclear Medium Effects on the Quark and Gluon Structure of Hadrons
June 3-7, 2008
Outline

- JLab E03-103 preliminary results:
 - Q^2-dependence study with Carbon
 - ^3He and ^4He
 - Heavy nuclei and Coulomb distortion

- Nuclear dependence of the EMC effect
 - World data re-analysis
 - New extrapolation to nuclear matter

- Resonance data and target mass corrections
The EMC ratio

Ratio of cross sections per nucleon:

\[R_{EMC} = \frac{\sigma^A_2 / A}{\sigma^D_2 / 2} \cdot \left(\frac{1 + F^n_2 / F^p_2}{Z + NF^n_2 / F^p_2} \right) \]

Isoscalar correction
Existing EMC Data

- SLAC E139 most complete and precise data set for $x > 0.2$

- σ_A/σ_D for $A=4$ to 197
 - ^4He, ^9Be, ^{12}C, ^{27}Al, ^{40}Ca, ^{56}Fe, ^{108}Ag, and ^{197}Au
 - Size at fixed x varies with A, but shape is nearly constant
Existing EMC Data

- SLAC E139 most complete and precise data set for $x>0.2$

- σ_A/σ_D for $A=4$ to 197
 - $^4\text{He}, ^9\text{Be}, ^{12}\text{C}, ^{27}\text{Al}, ^{40}\text{Ca}, ^{56}\text{Fe}, ^{108}\text{Ag}, \text{and} ^{197}\text{Au}$
 - Size at fixed x varies with A, but shape is nearly constant

- E03-103 will improve with
 - Higher precision data for ^4He
 - Addition of ^3He data
 - Precision data at large x and on heavy nuclei

 \Rightarrow Lowering Q^2 to reach high x region

![Graph showing the ratio $(\sigma_A/\sigma_D)_s$ for various nuclei.](image)
JLab Experiment E03-103

A(e,e’) at 5.0 and 5.8 GeV in Hall C

- Targets: H, ²H, ³He, ⁴He, Be, C, Al, Cu, Au
- 10 angles to measure Q^2-dependence

Spokespersons: D. Gaskell and J. Arrington
Post-doc: P. Solvignon
Graduate students: J. Seely and A. Daniel
Small angle, low $Q^2 \Rightarrow$ clear scaling violations for $x>0.7$,
but surprisingly good agreement at lower x
At larger angles ➔ indication of scaling to very large x
More detailed look at scaling

C/D ratios at fixed x are Q^2 independent for:

$W > 1.4 \text{ GeV}^2$

and

$Q^2 > 3 \text{ GeV}^2$

limits E03-103 coverage to $x = 0.85$

Note: Ratios at larger x will be shown, but should be taken cautiously
At larger angles \Rightarrow indication of scaling to very large x

The combined two highest Q^2 are used in the rest of the talk
E03-103: Carbon EMC ratio

- $W > 2.0$ GeV
- $W > 1.4$ GeV
- $1.1 < W < 1.4$ GeV

Preliminary
E03-103: 4He

JLab results consistent with SLAC E139
→ Improved statistics and systematic errors
E03-103: 4He

JLab results consistent with SLAC E139

→ Improved statistics and systematic errors

Large x shape more clearly consistent with heavier nuclei
E03-103: 4He

JLab results consistent with SLAC E139

→ Improved statistics and systematic errors

Large x shape more clearly consistent with heavier nuclei

Models shown do a reasonable job describing the data
E03-103: comparison carbon and 4He

Magnitude of the EMC Effect for C and 4He very similar

4He more consistent with SLAC A=12 fit than A=4
E03-103: comparison carbon and ^4He

Magnitude of the EMC Effect for C and ^4He very similar

^4He more consistent with SLAC $A=12$ fit than $A=4$

→ ^4He acts like a “real nucleus”

→ Some hint of difference in shape, but hard to tell with existing errors
E03-103: Preliminary 3He EMC ratio

Large proton excess correction
Good agreement with HERMES in overlap region
E03-103: Preliminary ^3He EMC ratio
E03-103: Preliminary 3He EMC ratio

All calculations shown use convolution formalism at some level

\[
\frac{F_2^{^3He}}{(F_2^D + F_2^p)} \quad \frac{F_2^{^3He}}{(2F_2^p + F_2^n)}
\]

Melnitchouk = Afnan et.al. PRC68 035201 (2003)
Benhar = private communication (Hannover SF, Paris potential)
Coulomb distortions on heavy nuclei

Initial (scattered) electrons are accelerated (decelerated) in Coulomb field of nucleus with Z protons

- Not accounted for in typical radiative corrections
- Usually, not a large effect at high energy machines – *not true at JLab (6 GeV!)*

E03-103 uses modified Effective Momentum Approximation (EMA)

\[
E \rightarrow E + \Delta \\
E' \rightarrow E' + \Delta
\]

with $\Delta = -\frac{3}{4} V_0$

\[
V_0 = 3\alpha(Z-1)/(2r_c)
\]

\[
\sigma_{\text{born}}/\sigma_{\text{cc}}
\]

x

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 1.05 1.1 1.15 1.2

197 Au, 50° 197 Au, 40° 56 Fe, 50° 56 Fe, 40°
Coulomb distortions on heavy nuclei

Initial (scattered) electrons are accelerated (decelerated) in Coulomb field of nucleus with Z protons

- Not accounted for in typical radiative corrections
- Usually, not a large effect at high energy machines – not true at JLab (6 GeV!)

E03-103 uses modified Effective Momentum Approximation (EMA)

$E \rightarrow E'$

$E' \rightarrow E' + \Delta$

$$\Delta = -\frac{3}{4} V_0, \quad V_0 = \frac{3\alpha(Z-1)}{2r_c}$$

EMA tested against DWBA calculation for QE scattering

→ application to inelastic scattering?
Effect of the coulomb distortion on E03-103 data

Before coulomb corrections

Gold

E03-103

\[(\sigma_A/\sigma_D)_S\]

\(x\)

0 0.2 0.4 0.6 0.8 1

0.7 0.8 0.9 1.0 1.1

\(40^\circ\)

\(50^\circ\)
Effect of the coulomb distortion on E03-103 data

After coulomb corrections

Gold

E03-103
E03-013 heavy target results and world data

Before coulomb corrections

![Graphs showing E03-013 heavy target results and world data](image)
E03-013 heavy target results and world data

After coulomb corrections on all data
E03-103: EMC effect in heavy nuclei
E03-103: EMC effect in heavy nuclei

E03-103 data corrected for coulomb distortion

Cross overs independent of A
Nuclear dependence of the EMC effect

Main difference due to E139 data sets used:
- Sick & Day used E139 Q^2-avg tables
- we used E139 constant Q^2 to be able to apply CC
Nuclear dependence of the EMC effect

After coulomb corrections
Nuclear dependence of the EMC effect

- Good agreement between E03-103 and SLAC E139 data after Coulomb corrections.
- Preliminary E03-103 results confirm A-dependence of the EMC effect.

Note: n/p correction is also A-dependent!
Nuclear matter

\[\frac{\sigma_{NN}}{\sigma_d} \]

- □ Sick & Day, PLB274 (1992)
- ○ All world data (cc)
Nuclear matter

\[
\frac{\sigma_{NM}}{\sigma_d}\) vs \(x\)
\]

- Sick & Day, PLB274 (1992)
- All world data (cc)
- including E03-103 prel. (cc)
Target Mass Correction on the EMC ratio

\[F_2(x, Q^2) = F_2(x, Q^2; M = 0) + \frac{M^2}{Q^2} F_2^{(1)TMC}(x, Q^2) + \frac{h(x, Q^2)}{Q^2} + O(1/Q^4) \]

- Purely kinematic effects: finite value of \(4M^2x^2/Q^2 \)
- Need to be applied before calculating higher twist effects
- TMCs are expressed by higher moments of \(F_2(x, Q^2; M=0) \)
Target Mass Correction on the EMC ratio

\[F_2(x, Q^2) = \frac{x^2}{r^3} F(\xi) + 6 \frac{M^2}{Q^2} \frac{x^3}{r^4} \int_\xi^1 d\xi' F(\xi') \]

\[+ 12 \frac{M^4}{Q^4} \frac{x^4}{r^5} \int_\xi^1 d\xi' \int_\xi^1 d\xi'' F(\xi'') \]

\[\xi = \frac{2x}{1 + r} \]

\[r = \sqrt{1 + 4x^2 \frac{M^2}{Q^2}} \]
Target Mass Correction on the EMC ratio

\[F_2(x, Q^2) = \frac{x^2}{r^3} F(\xi) + 6 \frac{M^2}{Q^2} \frac{x^3}{r^4} \int_{\xi}^{1} d\xi' F(\xi') \]

\[+ 12 \frac{M^4}{Q^4} \frac{x^4}{r^5} \int_{\xi}^{1} d\xi' \int_{\xi'}^{1} d\xi'' F(\xi'') \]

A-independent \Rightarrow mostly cancel in the ratio

At first order, the TM correction on the EMC ratio is equivalent to express them versus \(\xi \) and plot versus \(x \).
E03-103 data on Carbon
E03-103 data on Carbon with TMC
A-dependence

$(\sigma_A/\sigma_d)_S$

$A^{-1/3}$

$x = 0.6$

preliminary

- **Sick & Day, PLB274 (1992)**
- **World data re-analysis (cc)**
- **E03-103 prel. (cc)**

NM
A-dependence with TMC

\[
\left(\frac{\sigma_A}{\sigma_d} \right)_S
\]

\[x = 0.6\]

\[A^{-1/3}\]

- NM
- Sick & Day, PLB274 (1992)
- World data re-analysis (cc)
- E03-103 prel. (cc)

preliminary
Nuclear matter and TMC

\[\frac{\sigma_{NM}}{\sigma_d} \] vs. \(x \)

- Sick & Day, PLB274 (1992)
- All world data (cc)
- Including E03-103 prel. (cc)

Preliminary
Summary

- JLab E03-103 provides:
 - Precision nuclear structure ratios for light nuclei
 - Access to large x EMC region for 3He \rightarrow 197Au

- Preliminary observations:
 - Scaling of the structure function ratios for $W<2$GeV down to low Q^2
 - Carbon and 4He have the same EMC effect
 - Large EMC effect in 3He
 - Similar large x shape of the structure function ratios for $A>3$

- In progress:
 - Absolute cross sections for 1H, 2H, 3He and 4He: test models of σ_n/σ_p and nuclear effects in few-body nuclei
 - Quantitative studies of the Q^2-dependence in structure functions and their ratios
 - Coulomb distortion
 - Nuclear density calculations
 - Target mass correction